On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation

نویسنده

  • FRANÇOIS CASTELLA
چکیده

We present the semi-conductor Boltzmann équation, which is time réversible, and mdicate that it can be formally derived by considermg the large time and small perturbmg potential limit m the Von-Neumann équation (time-réversible) We then rigorously compute the corresponding asymptotics in the case of the Von-Neumann équation on the Torus We show that the limit mg équation we obtam does not coïncide with the physically reahstic model The former is indeed an équation of Boltzmann type, yt th memory m time, so that it appears to be time-reversible We comment on this point, and further describe the properties of the hmitmg équation Resumé. Nous présentons l'equation de Boltzmann des semi-conducteurs, qui est irréversible en temps, et indiquons qu'elle peut être dérivée heunstiquement par une limite en temps grand et potentiel perturbateur petit dans l'équation de Von-Neumann (réversible) Puis nous calculons rigoureusement cette asymptotique dans le cas de l'équation de Von-Neumann sur le Tore Nous montrons que le modèle limite ainsi obtenu ne coïncide pas avec le modèle physique attendu II s'agit d'une équation de type Boltzmann, mais avec un effet de mémoire en temps, de sorte qu'elle apparaît réversible dans le temps Nous commentons ce point, et proposons une description plus complète des propriétés de l'équation limite AMS Subject Classification. 35Q , 35Q40, 82C70, 81Q15, 70D99 Received February 19, 1998 Revised May 25, 1998

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

1 Outline of the classical approach

Within the density matrix formalism, it is shown that a simple way to get decoherence is through the introduction of a “quantum” of time (chronon): which implies replacing the differential Liouville–von Neumann equation with a finite-difference version of it. In this way, one is given the possibility of using a rather simple quantum equation to describe the decoherence effects due to dissipatio...

متن کامل

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017